References
Akama S, Shimizu-Inatsugi R, Shimizu KK, Sese J (2014) Genome-wide quantification of homeolog expression ratio revealed nonstochastic gene regulation in synthetic allopolyploid arabidopsis. Nucleic Acids Research 42:e46–e46. https://doi.org/10.1093/nar/gkt1376
Akiyama R, Sun J, Hatakeyama M, et al (2021) Fine-scale empirical data on niche divergence and homeolog expression patterns in an allopolyploid and its diploid progenitor species. New Phytologist 229(6):3587–3601. https://doi.org/10.1111/nph.17101
Chen Y, Chen L, Lun ATL, et al (2025) edgeR v4: Powerful differential analysis of sequencing data with expanded functionality and improved support for small counts and larger datasets. Nucleic Acids Research 53:gkaf018. https://doi.org/10.1093/nar/gkaf018
Conway JR, Lex A, Gehlenborg N (2017) UpSetR: An r package for the visualization of intersecting sets and their properties. Bioinformatics 33:2938–2940. https://doi.org/10.1093/bioinformatics/btx364
Deb SK, Edger PP, Pires JC, McKain MR (2023) Patterns, mechanisms, and consequences of homoeologous exchange in allopolyploid angiosperms: A genomic and epigenomic perspective. New Phytologist 238(6):2284–2304. https://doi.org/10.1111/nph.18927
Gabry J, Češnovar R, Johnson A, Bronder S (2025) Cmdstanr: R interface to ’CmdStan’
IWGSC (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191. https://doi.org/10.1126/science.aar7191
Levy AA, Feldman M (2022) Evolution and origin of bread wheat. The Plant Cell 34:2549–2567. https://doi.org/10.1093/plcell/koac130
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology 15:550. https://doi.org/10.1186/s13059-014-0550-8
Mandáková T, Marhold K, Lysak MA (2014) The widespread crucifer species cardamine flexuosa is an allotetraploid with a conserved subgenomic structure. The New phytologist 201:982—992. https://doi.org/10.1111/nph.12567
Paape T, Hatakeyama M, Shimizu-Inatsugi R, et al (2016) Conserved but attenuated parental gene expression in allopolyploids: Constitutive zinc hyperaccumulation in the allotetraploid arabidopsis kamchatica. Molecular Biology and Evolution 33:2781–2800. https://doi.org/10.1093/molbev/msw141
Robin X, Turck N, Hainard A, et al (2011) pROC: An open-source package for r and s+ to analyze and compare ROC curves. BMC Bioinformatics 12: https://doi.org/10.1186/1471-2105-12-77
Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology 11(3):R25. https://doi.org/10.1186/gb-2010-11-3-r25
Shimizu KK (2022) Robustness and the generalist niche of polyploid species: Genome shock or gradual evolution? Current Opinion in Plant Biology 69:102292. https://doi.org/https://doi.org/10.1016/j.pbi.2022.102292
Soltis PS, Marchant DB, Van de Peer Y, Soltis DE (2015) Polyploidy and genome evolution in plants. Current Opinion in Genetics & Development 35:119–125. https://doi.org/https://doi.org/10.1016/j.gde.2015.11.003
Sun J, Sese J, Shimizu KK (2025) A moderated statistical test for detecting shifts in homeolog expression ratios in allopolyploids. bioRxiv. https://doi.org/10.1101/2025.07.01.660977
Sun J, Shimizu-Inatsugi R, Hofhuis H, et al (2020) A recently formed triploid cardamine insueta inherits leaf vivipary and submergence tolerance traits of parents. Frontiers in Genetics 11:567262. https://doi.org/10.3389/fgene.2020.567262
Tossi VE, Tosar LJM, Laino LE, et al (2022) Impact of polyploidy on plant tolerance to abiotic and biotic stresses. Frontiers in Plant Science 13:869423. https://doi.org/10.3389/fpls.2022.869423
Urbanska-Worytkiewicz K, Landolt E (1972) Natürliche bastarde zwischen cardamine amara l. Und c. Rivularis schur aus den schweizer alpen. Berichte des Geobotanischen Institutes ETH, Stiftung Rübel, Zürich
Urbanska-Worytkiewicz K, Landolt E (1974) Hybridation naturelle entre cardamine rivularis schur et c. Amara l., ses aspects cytologiques et écologiques. Acta Socitatis Helvetica Scientiae Naturalis 1974:89–90
Yang Y, Zhang X, Wu L, et al (2021) Transcriptome profiling of developing leaf and shoot apices to reveal the molecular mechanism and co-expression genes responsible for the wheat heading date. BMC Genomics 22(1):468. https://doi.org/10.1186/s12864-021-07797-7
Zhao X, Guo Y, Kang L, et al (2023) Population genomics unravels the holocene history of bread wheat and its relatives. Nature plants 9:403—419. https://doi.org/10.1038/s41477-023-01367-3